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Part 1: Setting the Stage  

Motivation and background



Sparse Signal Recovery

! Goal: Recover x from y 

! M << N: infinitely many solutions
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Applications

! Signal representation (Mallat, Coifman, Wickerhauser, 
Donoho, …) 

! Functional Approx. (Chen, Nagarajan, Cun,  
Hassibi, …) 

! Spectral estmn., cartography (Papoulis, Lee, Cabrera, 
Parks, …) 

! EEG/MEG (Leahy, Gordonitsky, Ioannides, …) 

! Medical imaging (Lustig, Pauly, …) 

! Speech SP (Ozawa, Ono, Kroon, Atal, …) 

! Sparse channel estimation (Fevrier, Greenstein, 
Proakis, Prasad and M.,…)



Wireless Channel 
Estimation

! Wireless channels exhibit multipath 
! Naturally sparse in the lag-domain 
! Need to estimate both support & channel 

! Channel equalization & data detection 
! Partially unknown dictionary learning
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The Problem

! Noiseless case: Given y and   , solve 

! Noisy case: solve 

! l0 norm minimization 
! Combinatorial complexity  
! Not robust to noise

Ф



Breakthrough 1: 
Uniqueness

! Underdetermined systems 
! Infinitely many solutions, but … 
! Unique “sparse” solution if nullspace has no “sparse” 

vectors [Donoho, Elad ’02] 
! Unique soln. with high probability, if M ≥ k+1  

[Bresler; Wakin etc] 

! Sub-Nyquist sampling (compression) when: 
! Restrict to sparse signals 
! Sample in an “appropriate” basis 



Breakthrough 2:  
Just Relax!

! l1 min. instead of l0 min. 

! Convex optimization problem 

! Same solution as l0 minimization! 
! If the measurement matrix is random 
! Use slightly larger number of measurements 
! Robust to measurement noise 

! See [Donoho; Candes, Romberg, Tao etc]



Recovery Algorithms

! Sequential recovery methods: Sequentially identify 
columns of     most aligned with the residual 
! Matching pursuit [Mallat, Zhang; Cotter, Rao] 
! Orthogonal matching pursuit [Tropp 03] 
! CoSAMP [Needell, Tropp] 

! Joint recovery methods: Use a cost function that 
encourages sparse solutions 
! Basis pursuit (l-p, with p=1) [Chen et al.] 
! FOCUSS (l-p, with p < 1) [Gordonitsky et al.] 
! Lasso (BPDN) [Tibshirani] 
! Dantzig selector [Candes, Tao]

Ф



Performance Guarantees

! Mutual coherence 

! Result (noiseless case): If 
! OMP converges x after k iterations, where k = num. 

nonzeros in x [Tropp 03] 
! The sparse vector x0 that generated y is the unique 

soln to [Donoho, Elad 03] 

! Similar guarantees in the noisy case & in terms 
of restricted isometry constant etc.



Limitations of Greed & 
Relaxation

! Performance of BP and OMP depend on the form 
of the dictionary 
! Poor performance when condns. violated 
! Hard to relate estimation error to the dictionary  

! BP: perf. indep. of nonzero coeffs [Malioutov et 
al. 2004] 
! Performance does not improve when situation  is 

favorable 

! OMP: performance highly sensitive to magnitudes 
of nonzero coeffs 
! Poor performance with unit magnitudes

Ф



Other Limitations of Convex 
Relaxation

! Scaling/shrinkage:  
! Noiseless: l0 <-> l1 <-> l2. Shrinking large coeffs 

can reduce variance, but at the cost of sparsity  
! Noisy: The τ in lasso that minimizes the MSE 

could result in a much larger number of 
nonzero coeffs   

! Correlated dictionary: disrupts l0-l1 
equivalence 

! Estimating embedded params (e.g., in  )    Ф



To Recap

! Sparse signal recovery 
! Basic problem, breakthroughs in CS 
! Algorithms 
! Guarantees 

! Limitations 
! Scaling/shrinkage 
! Correlated dictionary 
! Embedded parameters



Part 2: Don’t Relax!

A time and place for nonconvex methods?



Bayesian Methods

! MAP estmn. using a sparse linear model 
! Also a regression problem with sparsity 

promoting penalties (e.g., lp-norm) 
! l1-min (BP/LASSO) is a special case 

! Algorithms: 
! Iterative reweighted l1 [Candes et al. 2008] 

! Iterative reweighted l2 [Chartrand & Yin 2008] 

! EM-based SBL [Tipping, 2001], [Wipf, Rao 2007] 
! AMP [Schniter 2008], [Rangan 2011]



MAP Estimation

! For sparse solutions, g(|xi|) should be a concave, 
nondecreasing function 
! Example: g(|xi|) = |xi|

p, p ≤ 1 
! Lasso is a special case: p=1 

! Any local min. of the MAP estmn problem has at 
most M nonzeros [Rao et al., 99]  

Separable prior



Why does it work?

! Min |x1|p + |x2|p subject to ϕ1x1 + ϕ2x2 = y

[Courtesy: Wipf, Rao]



The Optimization Problem

! To solve 

! g(x) concave, monotonically " in |x| 
! G(x) convex + concave



Majorization-Minimization 
Approach

! Find an upper bound g(x) ≤ g(x|x(m)) 
! Equality at x = x(m), convenient for opt. 

! Step 1: Optimize 

! Step 2: Set m <- m+1, update g(x|x(m)), iterate 

! Works because  
   G(x(m+1)) ≤ G(x(m+1)|x(m)) ≤ G(x(m)|x(m)) = G(x(m))



Iterative Reweighted l1

Weighted l1 minimization

! Concavity: g(x) ≤ g’(x(m))(x–x(m)) + g(x(m)) 
! Equality at x = x(m), linear in x 

! Iterative reweighted l1: [Candes et al. 08] 

! Init: m = 0, x(m) = something convenient 
! Iterate:  

! Optimize 

  

! m <- m+1, update g’(xi
(m))  

! Until convergence



Iterative Reweighted l2

! g(x) concave in x2: 

! Optimization problem 

! Iterative reweighted l2 [Chartrand et al. 08]  
! Init: m = 0, x(m) = something convenient 
! Iterate: 

! Compute 
! m <- m+1, update Wm 

! Until convergence



An Example

! Suppose g(x) = log (|x| + ε), ε > 0 
! Concave in |x|, x2 

! Iterative reweighted l1 

! Iterative reweighted l2



Limitations of MAP

! Many local minima O(NCM) 

! May get stuck at a local minimum 

! MAP only guarantees max p(x = x0|y) 
! Probability mass, rather than mode, may be more 

relevant for continuous random vars 
! Perhaps posterior mean E(x|y)? 

! Even with the true prior, MAP estimators do not 
minimize MSE: so MSE may be high! 
! In fact, using “true” statistics often does not lead to 

the lowest MSE!



To Recap

! Bayesian estimation 
! Basic MAP estimation 
! Majorization-minimization approach 
! Iterative reweighted algorithms 

! Limitations 
! Many local minima 
! Posterior mean vs. posterior mode



Part 3: Sparse Bayesian 
Learning

Use lots of priors and pick the best one!



Setup

! Recall the canonical model  

! Gaussian noise model 

! General parameterized prior

y x

sparse  
signal

 

vФ

noise



Sparse Bayesian Methods

! Estimate γi from the data: Type-II ML 

! SBL Cost function



A Simple Suboptimal Procedure

! Just maximize the integrand. Leads to 

! Alternating minimization: 
! Initialize Γ = I 
! Compute   

! Repeat 

! Will call this “Approximate MAP” or A-MAP 
estimation



The EM Iterations

! E-step: posterior distribution given Γ(t): 

! The posterior distribution is 

! M-step: maximize Q(Γ|Γ(t)) given 
posteriors gathered in the E-step:



The SBL Algorithm

1. Initialize Γ = I  

2. Compute 

3. Update 

4. Repeat steps 2 and 3  

5. Output μ after convergence 



Variational Interpretation

! Lower bound on L: 

! In each iteration, EM maximizes the bound 

Jensen’s inequality



Convergence

! Convergence guaranteed to a fixed pt. of L from any 
initialization (property of EM) 
! Unfortunately, fixed point not necessarily a local min or 

saddle point [Wipf and Nagarajan 09] 
! But, not found to be a problem in practice 

! The global min of L occurs at the sparsest solution in 
the noiseless case [Wipf et al. 04] 

! All local minima occur at sparse solutions in the noisy 
case [Wipf et al. 04] 

! More properties [Wipf and Nagarajan 09] 



Other Options for SBL Cost Min.

! McKay updates [Tipping, 2001] 

! Set gradient of SBL cost = 0 

! Faster convergence than EM 

! Greedy approach:  

! Update hyperparams one at a time [Tipping & Faul, 2003] 

! Closed-form update for each hyperparam 

! Fast, but can get trapped in a local min. 

! Fast Bayesian matching pursuit [Schniter et al., 08]



Other Options for SBL Cost Min.

! Use dual-form of SBL. Cost function: 

! Facilitates iterative reweighted l1 and l2 
algorithms [Wipf and Nagarajan, 09] 

! Overcomes some limitations of EM 

! Replace E-step with an approx. posterior 
computation: AMP-SBL [Al-Shoukairi and Rao 14]



! Generate random 50 
x 100 matrix A  

! Generate sparse 
vector x0 

! Compute y = Ax0 

! Solve for x0, average 
over 1000 trials 

! Repeat for different 
sparsity values

Empirical Example

Unit magnitude 
entries

Highly scaled 
entries



Advantages of SBL

! Averaging over x: fewer minima in p(y;γ) 
! Versatile: γ can also be used to 

! Tie several parameters together - 
fewer parameters to estimate 

! Incorporate structure 
! Block/cluster sparsity 
! Intra/inter-vector correlation



Colored Noise

! In many applications, noise may be 

! Colored 

! Rank-deficient covariance matrix 

! Example 1: interference with a known 
direction of arrival 

! Example 2: Good cop, bad cop: expensive, 
noiseless meas. or cheap, noisy meas.?



Model

! Measurement model 

! Noise model 

! Equivalent model 

! How to recover x from {y1, y2}?



CoNo-SBL

! E-Step: 

! Posterior density 



CoNo-SBL (contd)

! Can let            by using easy results 
from block matrix inversion and 
Woodbury identity 

! For example: (Details: [Vinjamuri & M., ICASSP 15]) 

! M-Step same as before:



Empirical Example
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To Recap

! Sparse Bayesian learning 
! Sparse vector recovery via estimating 

hyperparameter 
! Expectation-maximization iterations 
! Convergence properties 
! Alternative implementations 

! Limitations 
! Computational complexity  

! More recent algos overcome this 
! Slow convergence 

! Fast versions exist, but without the same 
convergence guarantees



Part 4: Extensions
1. Multiple measurement vectors 

2. Distributed sparse signal recovery 

3. Cluster-sparsity, inter-vector correlation



Multiple Measurement Vectors: 
Joint Sparsity

! Observation Model 

! Why? As L -> ∞, with m = 1,  

P(exact support recov.) -> 1 [Baron et al. 09] 

! Joint Prior



Algos for Joint Sparse 
Recovery

! M-OMP [Tropp et al., 06] 

! M-BP [Cotter et al. 05, Malioutov et al. 05]  

! M-Jeffreys 

! M-FOCUSS 

Num.  
measurements

Sparse vector dimension



The M-SBL Algo

! Cost function 

! EM Iterations 

! Posterior distribution



E & M Steps

! E Step: 

! M Step: 

! Average of the individual estimates 
of γi across measurements



Empirical Example

! M = 25  
N = 50  
L = 3 

! Source: 
[Wipf & Rao, 
TSP Aug. 04]



Learning Over a Network

! Network of L data centers 
! Node j has observation yj 

! Want to learn xj:  
! Statistically related  

to yj 

! Centralized processing: 
! Optimal, but 
! Computationally demanding 

! Distributed (in-network) processing: 
! Secure 
! Robust to node failures



SBL for Joint Sparse 
Recovery

! EM Iterations: 
! E-step:  

! Separable: xj are independent given Γ 

! Can be computed locally at each node 

! M-step: not separable



A Simple Trick

! Equivalent problems 

! For distributed implementation

Can be computed 
locally at each node!  
Objective fn. separable

Bridge nodes 
Linear constraints



Alternating Directions Method 
of Multipliers

! General problem 

! Augmented Lagrangian 

! ADMM iterations
Convex problems, easy to solve

Dual update



Benefits of ADMM

! Facilitates distributed algorithms 
! Many rigorous convergence results exist 
! E.g.,                       where cr -> 0  

 
monotonically as r -> ∞ 

! Can extend to many other nonseparable 
objective fns, e.g., the nuclear norm 

! Fastest convergence



Simulation Result: Mean 
Squared Error

L = 10 nodes, n = 50, m = 10, 10% sparsity

[S. Khanna, C. R. Murthy, Globecom 2014]



Support Recovery & ADMM 
Parameter ρ

L = 10 nodes, n = 50, SNR = 15dB (L), m = 10 (R), 10% sparsity

[S. Khanna, C. R. Murthy, Globecom 2014]



To Recap

! Multiple measurement vectors 

! M-SBL algorithm 

! Exploits joint sparsity 

! Distributed sparse signal recovery  
! ADMM iterations 
! Simulation examples



Part 5: Applications 

Wireless channel estimation & data detection



Wireless Channels

! Wireless channels exhibit multipath 
! Naturally sparse in the lag-domain 

! Channel equalization & data detection 
! Need to estimate both support & channel
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Channel Models

! Block fading channel:  
 
Channel constant for the duration of a block 
(say, K symbols), changes i.i.d. from block-to-
block 

! Time-varying channel: 
 
Channel varies from symbol-to-symbol 
! Want to exploit temporal correlation (group-sparse 

estimation)



Outline

1. Block fading case:  
1. Known channel support: Joint channel 

estimation & data detection 
2. Unknown channel support: Channel and support 

estimation using pilot symbols 
3. Unknown data & support: Joint support, channel 

estimation & data detection 

2. Time-varying case:  
1. AR model: Kalman-EM algo for joint support, 

channel estimation & data detn



OFDM with Block Fading 
Channel

! Received signal model y = X F h + v 

! Goal: Given y, jointly estimate X & h 

Diagonal data matrix; N x N  
N: number of subcarriers

N x L DFT matrix, containing  
first L cols of N x N DFT matrix  
L: max channel delay spread  

L x 1 channel vec

Noise



Support-Aware EM

! Joint channel estimation and data 
detection 

! E-Step: 

! M-Step:



Sparse Channel Estimation 
from Pilot  Symbols

! h sparse in time (lag) domain 

! Hierarchical prior: 
γi deterministic, unknown hyperparams 

! Goal:  
Given y, X, estimate h & sparsity profile  



SBL for Basis Selection

! E-Step:  

! M-Step:



Basis Selection to Channel 
Estimation

! Upon convergence, many of the γi -> 0 

! If γi = 0, then h(i) = 0 

! Obtain channel estimate as a by-product of 
the EM iterations



Joint Channel, Support Estmn. 
& Data Detn.

! y = X F h + v



Joint Channel, Support Estmn. 
& Data Detn.

! Get h as a by-product of the E-step



Simulation Result

! OFDM system  

! N=256 subcarriers,  

! max delay spread  
L=64 

! K=7 symbols/slot 

! PedB PDP:  
6 nonzero taps  

! 44 pilot subcarriers 

! Data: rate ½ turbo  
code, QPSK 



BER Performance



Time-Varying Channels

! Channel correlated from symbol-to-
symbol 

! AR model: 

! The factor ρ depends on the normalized 
doppler freq, which in turn depends on 
the speed of the mobile  

! SBL framework can be extended to 
incorporate the temporal correlation



Joint Kalman SBL (JK-SBL)

! Complexity O(KL3): smaller 
than block-based methods 
O(K3L3) [Zhang et al. 10]  
! (K = num. OFDM symbols 

used in joint estimation) 

! In the block-fading case: get 
recursive, more 
computationally efficient 
versions of our algos 



Simulation Result

! fdTs = 0.001 (slowly time-varying)



MIMO-OFDM

! Goal: Recover h1, …, hNr from y1 … yNr

! [Prasad & M., NCC 2014]



MMV Framework

! Measurement model 

! Pilot subcarriers

76



The M-SBL Algorithm

! E Step 

! M Step



The E and M Steps

! E-Step: Posterior distribution 

! M-Step:



Joint Channel Estmn. 
& Data Detection

! E Step remains unchanged 

! M Step: 



The M Step Splits as 
Two Separate Problems

Can use, e.g., sphere decoding to update X



MSE Performance

! 2 x 2 MIMO-OFDM 
System 

! 256 subcarriers 

! CP length 64 

! 44 pilot 
subcarriers 

! PedB PDP 

! QPSK constellation



Exploiting Structure 
Helps!



BER Performance



To Recap

! SBL based OFDM channel estimation 

! Block-fading case: proposed J-SBL and 
low-complexity recursive J-SBL for joint 
channel estmn & data detn 

! Time-varying case: low-complexity K-SBL 
and JK-SBL proposed 
! Algos fully exploit channel correlation 

! MIMO case: Estimation in MMV framework 
! Take-home point: Exploit any known structure!



Extensions

! MIMO-OFDM: tracking time-varying 
channels using the Kalman framework 
[Prasad & M., submitted, TSP 2014] 

! Cluster sparsity: paths occur in closely 
spaced clusters [Prasad & M., ICASSP 2014] 

! Approximate sparsity due to transmit/
receive pulse shaping, filtering, etc [Prasad 
& M., TSP Jul. 2014]



Summary

! Bayesian methods: 
! Simple updates 
! Promising performance 

! Challenges: 
! Theoretical analysis 
! New algorithms 
! Novel applications 

! Plenty of opportunities!
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